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Inner product methods for eigenvalue calculations 

J Killingbeck, M N Jones and M J Thompson 
Department of Physics, University of Hull, Hull  HU6 7RX, UK 

Received 3 September 1984 

Abstract. An inner product method of calculating eigenvalues is developed in both numeri- 
cal and perturbation theoretic forms, and shown to be applicable to bound state and 
resonant state problems. The method is used to treat a problem in which the perturbed 
efiergy is a non-analytic function of a perturbation parameter. 

1. Introduction 

Many techniques can be used to obtain the energy eigenvalues for the one-dimensional 
Schrodinger equation in the special case where the potential is a finite polynomial. 
Killingbeck (1983) gave a survey of several available methods which are suitable for 
microcomputers, including methods based on diagonal hypervirial relations. Such 
relations involve the expectation values ( + l x N I + ) ,  where + is the unknown eigenfunc- 
tion. They can be used in direct numerical calculations (Richardson and Blankenbecler 
1979) or in perturbation theoretic calculations using renormalised series (Killingbeck 
1981a). However, Blankenbecler et a1 (1980) pointed out that it is also possible to 
construct a formalism based on the inner product (41xNI+) ,  where 4 is some convenient 
reference function. They gave a few numerical examples for perturbed oscillator 
problems. 

The present work reports a more detailed analysis and numerical evaluation of the 
inner product approach, and presents several new results. Section 2 derives the 
fundamental recurrence relations used by the inner product approach and points out 
that the energy formula used has close links with that for the renormalised series 
approach. Section 3 presents a version of the recurrence relations suitable for numerical 
calculations, and demonstrates that the approach used by Blankenbecler et a1 (1980) 
can be considerably simplified. The energy eigenvalues appear in our work and in that 
of Blankenbecler as the zeros of a function E - E, ;  9 3 reports for a first time the 
presence of singularities in this function. Section 4 gives a modification of the basic 
recurrence relations which permits them to be used in the calculation of Rayleigh- 
Schrodinger perturbation series for the energy. Sections 3 and 4 thus set out two 
alternative versions of the inner product approach. Sections 5 and 6 apply these two 
versions together, first to a resonant state problem and second to a special test problem 
which involves an eigenvalue which is a non-analytic function of a perturbation 
parameter. Section 6 also comments that perturbation theory can cope fairly well with 
this non-analytic energy if it is used in a manner akin to that of the renormalised series 
approach (Killingbeck 1981a). Section 7 briefly points out that the ideas which work 
for perturbed oscillator problems can be used also for perturbed Coulomb potential 
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problems. Section 8 comments on some double precision tests which were carried out 
and 8 9 points out some problems which have arisen out of the results of the present 
work. 

We should perhaps emphasise again a point which adds extra interest to the study 
of methods which calculate energies without yielding wavefunctions (Killingbeck 1979, 
1983). Once an accurate energy calculation is available it is possible to get expectation 
values such as ($lx21$) by adding a small term EX’ to the potential and noting that 
the energy change should be .s(t,!Ix21$). This eigenvalue differencing approach reduces 
the problem to that of calculating energies, which are usually the quantities most easy 
to obtain. 

2. The basic recurrence relations 

We start from a Schrodinger equation with a monomial potential function of even parity, 

H$ = - D 2 $ +  CMxM+ = E$ (1) 

4 = x p  exp(-bx2/2) (2) 

(with M an even positive integer) and introduce a reference function 

where 6 is a variable real positive parameter and P (the parity indicator) is either 0 
or 1. We define the inner product quantities 

s,  =(41xN19) (3) 

and work out (41x”HI&) by operating first to the right and then to the left with H .  
The choice (2) for 4 simplifies the algebra. Equating the two results gives 

[ E  - ( 2 N + 2 P +  l)b]SN = C M S , + M  -b2S ,+ , -  N( N + 2 P -  1)SN-z .  (4) 

( 5 )  

For the special case N = 0 the recurrence relation takes the form 

[ E  - (2  P + 1 ) b]S ,  = CMSM - b2 s2. 
Equation (5) is directly related to the usual energy shift formula of Rayleigh- 
Schrodinger perturbation theory. If the Hamiltonian in equation ( 1 )  is expressed in 
the form 

- D 2 + b 2 X 2 + [ C ~ X M  -b2x2]  (6) 

then the reference function 4 is an eigenfunction of -D2+b2x2  with eigenvalue 
(2P+ 1)b. The energy shift due to the perturbation V in square brackets is given by 
the equation 

AE(4l*) = (41 VI*) ( 7 )  
of perturbation theory. This is equivalent to equation (5 ) ,  and shows that the inner 
product approach with reference function (2) is implicitly based on a partitioning of 
the Hamiltonian similar to that used in the renormalised series approach (Killingbeck 
1981a), except that the perturbation parameter is set equal to 1. The inner product 
method can be used either in a direct numerical calculation of E (0 3) or in a 
perturbation series approach (§ 4). When the potential in equation (1 )  is a polynomial, 
it is clear that an appropriate sum of terms with varying M must be used in equations 
(4) and (5).  The computations described in 4 3 show the rather surprising feature that 
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excited state energies can be obtained, even though the energy shift formula is based 
on a nodeless function C$ which is a scaled harmonic oscillator ground state 
wavefunction. 

3. The numerical version of the method 

The perturbed oscillator Hamiltonian 

H = -D2 + px2 + Ax4 = H( p, A )  

will be used as an  example to show how the equations of § 2 lead to numerical results 
for eigenvalues. To proceed we write down the appropriate version of equation (4), 
divide it by SN, and then introduce the quantities RN such that 

s N + 2  = RNSN.  (9) 

R N  - 2  = N ( N + 2 P - 1 )/ TN (10) 

TN = ( 2 N + 2 P +  1)b  - E + ( p  - b 2 ) R ,  +ARNRN+2. 

After a little rearrangement we obtain a ‘downhill’ recurrence relation, 

where 

(11) 

If the perturbing potential is changed to Ax6, then the last term in (1 1 )  adds an  extra 
factor RN+3 (and so on for higher powers). The energy formula associated with ( 1  1 )  
is obtained by using the appropriate sum of terms in ( 5 )  and is written in the form 

E, = ( 2 P  + 1 ) b + ( p - b 2 )  Ro + ARoR2 (12) 

with the symbol E,  (calculated energy) being used instead of E. The computational 
procedure is simple: all the RN for N > No are set equal to zero, the recurrence relation 
is used to calculate the lower RN down to Ro for some trial E, and then E,  is calculated 
from equation (12). The idea is to make E,  equal to E. This is most efficiently achieved 
by regarding (E,-  E )  as a function of E and employing any convenient root finding 
algorithm (Killingbeck 1985) to locate the roots. These roots are then the approximate 
eigenvalues. The procedure used here is well suited to modern microcomputers, which 
will automatically assign zero values to all the RN array elements as soon as an  array 
dimension is declared. Blankenbecler et a1 (1980) undertook a lengthy analysis of the 
asymptotic form of the SN and the RN, to get starting values for the downhill recurrence, 
and also used a more complicated reference function 4 when studying the octic 
perturbed oscillator. Our empirical microcomputer investigation showed that neither 
of these complications is necessary. It also revealed an  extra feature of the method 
which was not apparent in the ground state calculations of Blankenbecler et a1 (1980), 
and which we discuss below. Table 1 shows how the estimated ground state energy 
for the Hamiltonian H( 1, 1) varies with b and No. The true energy should be indepen- 
dent of 6, of course, and  for a fixed No the use of the ‘plateau criterion’ (Killingbeck 
1981a) that jdE/abl shall be a minimum might be used to pick out a ‘best’ E value. 
However, the most simple procedure is to increase No;  this dramatically decreases the 
b dependence of the calculated energy and  so simplifies the calculation. 

A detailed computation of the quantity ( E ,  - E )  as a function of E shows that 
each zero of the function (except for the lowest of each parity) has a neighbouring 
singularity just below it. The function varies as ( E  - E J ’  in the neighbourhood of a 
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Table 1. Energy estimates for the H( I ,  1) ground state. (Only the trailing digits are shown: 
the starting digits 1.39 are common to all the entries.) 

No 
b 20 30 40 50 

2 21 624 23 617 23 513 23 516 
3 23 519 23 519 23 516 23 516 
4 23 662 23 517 23 516 23 516 
5 25 214 23 516 23 516 23 516 
6 70 566 23 765 23 516 23 516 

singularity at E = E,, and the gap between each zero and its partner singularity becomes 
smaller for the higher eigenvalues. Table 2 shows some typical results for the even 
parity states. To find the singularities the slight change ( E ,  - E )  + ( E ,  - E ) - ’  was made 
in the root finder program : this interchanges the zeros and singularities in the function. 
The results show that the gap between a zero and its corresponding singularity increases 
with b, so that it is not very difficult to find several excited state energies even with a 
simple root finding algorithm. The algorithm used was a Newton’s method algorithm 
with an attenuator built in to avoid instability (Killingbeck 1984, 1985). Any method 
which locates the ‘roots’ of a function f( E )  by finding boundaries between regions of 
positive and negative f( E )  would suffice to locate the singularities as well as the zeros. 
For example, the microcomputer method of Kantaris and Howden (1983) would be 
applicable as a root finder in conjunction with the inner product method. 

Table 2. E values at which the function E - E ,  has a zero or a singularity. Results are 
shown for the even parity states, with P = 0 and No = 100 throughout. 

Zeros Singularities 
b = 3 ,  5 ,  7 b = 3  b = 5  b = 7  

- - 1.392 35 I6 - 
8.655 0500 7.540 7938 6.836 2395 6.464 2938 

18.057 557 17.685 259 17.045 286 16.549 630 
28.835 338 28.739 366 28.356 130 27.909 557 
40.690 386 40.669 757 40.494 553 40.175 213 
53.449 102 53.445 358 53.378 964 53.187932 

4. A perturbation-theoretic version 

If the monomial term in the Schrodinger equation ( 1 )  is written as A’VMxM, then we 
may postulate the series expansions 

S N = C S t A M  (13) 

E = C  E ~ A ~ .  (14) 
Substituting these expansions into (4) and taking coefficients of the A terms on each 
side leads after some rearrangement, to an ‘uphill’ recurrence relation for the 
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coefficients: 

2NbS$=  N ( N + 2 P -  1)s;-2- VMSK,;’,+S 

where 
K 

s = E  ~ ~ ~ 5 - j .  
I 

The energy equation ( 5 )  produces the perturbation equations 

Ej = V,S’,-’ ( J >  I) 
Eo= ( 2 P +  l ) b  

if the traditional intermediate normalisation So= 1 is used. This is achieved in the 
computation by setting So equal to 1 and all other SN equal to zero (the latter step 
being accomplished automatically on a modern microcomputer). From the equations 
above and the discussion of § 2 it is clear that the perturbation theory derived here 
refers to the even and odd parity ground states of the Schrodinger equation 

- D2$ + b2x2$ + AIVMxM$ = E$ (19) 

and perturbations involving various powers of A as well as x can be handled by adding 
appropriate terms into equations (15) and (17). The series for the energy will be a 
divergent alternating series, but can be made to yield reasonable numerical results by 
using the renormalising approach which was originally used for hypervirial series 
(Killingbeck 198 la, b). The inner product and hypervirial algorithms produce identical 
energy series, so the perturbed oscillator results of Killingbeck (1981a, b) are repro- 
duced by the inner product approach. 

5. Quasi-bound state energies 

If the numerical calculation of § 3 is carried out with the perturbation parameter A set 
equal to a small negative number (typically between 0 and -0.05) then the resulting 
energies for low-lying states are obtained just as easily as the corresponding energies 
for A > 0. However, the Hamiltonian (8) should not have true bound states for A < 0 
and so the calculated energies are presumably to be interpreted as the real parts of 
the complex energies associated with narrow resonances. The inner product approach 
thus gives a speedy method for calculating such quantities. For a true bound state the 
calculated energy reaches a limit and then remains constant as No is increased. For 
the resonant states, however, the calculated energy fluctuates as No is increased, so 
that only a limited number of stable decimal digits can be quoted. Table 3 shows some 
results for the ground state of the perturbed oscillator. The energies quoted agree to 
the number of digits given with those obtained by two other calculations. The first of 
these used the approach of 9 4, summing the Rayleigh-Schrodinger energy series to 
its smallest term for each A. The second calculation involved using the Dirichlet 
conditions $ ( * X )  = 0, the ‘particle in a box’ approach, with each energy eigenvalue 
being a function of X .  X was varied to locate the X and E for which laE/aXl is a 
minimum. The E values can be calculated either by finite difference or power series 
methods (Killingbeck 1983). Since the box approach gives results which agree with 
those of other techniques for calculating the real part of resonant state energies, our 
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Table 3. Quasi-bound state energies for the perturbed oscillator ground state with small 
negative A. The three methods used (see text) give results which agree to the digit shown. 

0.01 0.992 363 22 
0.02 0.984 427 67 
0.03 0.976 146 2 
0.04 0.967 45 
0.05 0.958 2 

results indicate the value of the two inner product formalisms (numerical and perturba- 
tion-theoretic) for resonant state calculations. The detailed comparison of the three 
methods was only carried out for the even parity ground state, but the numerical 
method of § 3 easily gives results for higher resonant states as well. 

6. A special perturbation problem 

The most common problem arising in perturbation theory is that of taming a divergent 
series to get a finite (and correct) result; both Pad6 approximants (Simon 1970) and 
renormalised series (Killingbeck 1981a) can be used to handle the problem. In some 
cases, however, the energy perturbation series may converge and yet not give the correct 
energy, even for a well defined bound state. The methods of 94 3 and 4 are suitable 
to explore such a case. The Schrodinger equation with the Hamiltonian 

- D 2 +  x*+  A (8x4 - 1 2 ~ ~ )  + 16A2x6 

= exp( -&x2 - Ax4) 

(20) 

(21) 

has the exact eigenfunction 

with energy 1,  as may be verified directly. The Hamiltonian (20) clearly has bound 
states for real A of either sign, whereas the function (21) is not square integrable if A 
is negative. For A < 0 the numerical inner product method of § 3 can be used to 
compute the ground state energy, which takes the form 1 + A ,  with A small. Table 4 
shows some results. Alternatively, the approach of § 4 permits the calculation of the 
energy perturbation series in A, since the formalism allows the perturbation to involve 
different powers of A as well as x. We would intuitively suspect that the energy series 

Table 4. A values for the Hamiltonian of equation (20) for small negative A. (Twenty-digit 
computer precision used, with No = 1000.) 

I A l  

0.0030 
0.0035 
0.0040 
0.0045 
0.0050 
0.010 

A (numerical) A ( A ) ,  equation (22) 

7E-19 7.14E - 19 
2.7498 - 16 
2.3846 - 14 
7.6668 - 13 
1.231 E - I 1  
3.2468 -6  3.3178-6 

2.747 E - 16 
2.3868 - 14 
7.6858 - 13 
1.2368 - 1 I 
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would have Eo = 1 and all higher E ,  zero, so that it would give the correct E for A > 0 
and a wrong E for A < 0. For a finite computer to give zero for all the E,  (with n > 0) 
is not possible, since the coefficients S ,  in equation (15) increase with both K and 
M and the rounding error will eventually spoil the exact cancellations needed to yield 
E,  values which are identically zero. Problems with computer overflow were avoided 
by using the definition S $ = 8 N T t  and rewriting the equations in terms of the Tt. 
Problems with rounding error could not be removed, however, and so an empirical 
approach was tried. The computation of the E ,  was carried out using three levels of 
increasing precision. The number of zero E,  coefficients obtained increased with the 
precision, Elo being the highest coefficient obtained as exactly zero (with 20 digit 
precision). These results suggest that the E,  are (as expected) zero beyond Eo. In this 
case the quantity A = E - 1 (which is zero for A > 0) presumably is some non-analytic 
function of A. The values of A as obtained from the numerical calculation give a 
graph of In A versus 1Al - l  which is very closely linear for small [ A I  and we estimate 
the leading term in A to be of the form 

for A + 0-, with A = 0.890 and B = 0.1250. As table 4 shows, this function fits the 
numerical A values quite well over several orders of magnitude. 

The preceding results seem to imply that the energy values E ( A )  for A < O  are not 
obtainable by perturbation theory. However, we managed to make the perturbation 
formalism of 0 4 yield A values with an error of less than one percent by the simple 
device of linearising the theory in A. The perturbing terms in (20) were written in the 
form 

A[8x4- 12x4+ 16px6]=AV(p) (23) 

with p set numerically equal to A during the computation of the energy coefficients. 
Each A value thus produces its own series of E,  coefficients and this flexibility is 
apparently sufficient to let the series (summed to its smallest term) give a reasonable 
fit to the non-analytic function A ( A ) .  The ratios E , + , / E , ,  were observed to approach 
a roughly constant value just before the smallest E,, term, and a geometric continuation 
of the series improved the A estimate still further, making it correct to 1 part in lo3 
for I A /  values greater than 0.015. 

7. Perturbed Coulomb potentials 

The methods of 00 3 and 4 can be modified fairly easily to deal with the radial 
Hamiltonian 

- $ D 2 + $ f ( l +  1 ) r - 2 - Z r - 1 +  V,r'. (24) 

exp(-Pr) (25) 

S N  = (41rNI+)  (26) 

The comparison function (for states of angular momentum I )  is taken to be 

4 = r'+' 

and the S N  are defined as 
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where $ is the unknown eigenfunction of the Hamiltonian (24). The recurrence relation 
for the S N  is then 

( E  +fp’)S,  = [ p (  M + 1 + 1)  - Z1SN-I - fN(21+ 1 + N)SN-2 + VMSN+,  

and it can be converted to ‘downhill’ form to give numerical calculations analogous 
to those of 0 3 or to ‘uphill’ form to give a perturbation calculation analogous to that 
of $4 .  The perturbation formalism refers to the ground state of each 1 value. Since 
the Coulomb potential has its energy levels densely packed just below E = 0, it requires 
great care to pick out the excited states numerically if V ,  is zero. However, use of a 
non-zero VMrM term in (24) usually gives a sufficient splitting of the energy levels to 
make their separate location easy. We have checked that the perturbation formalism 
based on (27) gives the correct energy series for the perturbations Ar and Ar2 acting 
on the 1s ground state; the coefficients were given previously by Killingbeck and 
Galicia (1980). We have also checked that the numerical formalism based on (27) 
gives the correct energies for a perturbation Ar2,  as required for calculations on the 
quadratic Zeeman effect (Killingbeck 1981b). For the perturbation Ar with small 
negative A, the numerical formalism gives quasi-bound state energies which agree with 
those found by other techniques, just as for the oscillator problem of § 5 .  The numerical 
formalism also leads to interlaced zeros and singularities in the function ( E ,  - E )  for 
excited states of each 1. Thus the various characteristics of the inner product method 
which were discovered for even and odd parity states in the oscillator problem also 
apply for each angular momentum family of states in the perturbed Coulomb potential 
problem. 

8. Some double precision tests 

Most of the results reported in this work were obtained using a Sinclair Spectrum 
microcomputer, for which simple programs were written to apply the methods of § §  3 
and 4 (Killingbeck 1984b). However, in order to test the method of § 3 more severely 
we carried out double precision calculations for various energy levels of the perturbed 
oscillator Hamiltonian H ( p ,  A )  given by equation (8). The expectation values (x’) 
and (x4) were also calculated for each state by using the energy differencing approach 
(Killingbeck 1979). An internal check on the results was provided by noting that the 
independently calculated values of E, (x’) and (x4) correctly satisfied the virial theorem 
E =2p(x2)f3A(x4). A value of No= 1000 was more than adequate to give energies 
good to 20 significant digits. Only one energy value, the ground state energy 
for H ( 0 ,  l ) ,  appears to have been calculated to this kind of accuracy previously 
(Richardson and Blankenbecler 1979). We obtained a result which agrees with theirs to 20 
digits, 

E = 1.060 362 090 484 182 8996. 

We note that the energy quoted by Crandall (1983) and attributed to Penk is incorrect 
in having a seventeenth (and last) digit of 0 instead of 9. These double precision 
results seem to establish clearly that the use of the initial condition RN = 0 for N > No 
gives numerical energy values of any desired accuracy, even though the asymptotic 
behaviour of the RN as determined by analysis (Blankenbecler et a1 1980) is quite 
different. This appears to be a case in which the ‘downhill’ use of the recurrence 
relation picks out a dominant solution which is independent of the initial values 
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provided that No is large enough. The studies of Hautot and Ploumhans (1979) may 
be relevant in explaining this effect which our numerical investigations have demon- 
strated. 

9. Conclusion 

The present work has shown clearly the accuracy and simplicity of the inner product 
method, in both its numerical and perturbation theoretic forms. However, it has also 
produced a few new mathematical problems which we wish to point out to interested 
readers. First, although the energy shift formula of § 2 is based on a nodeless reference 
function, it leads to excited state energies in § 3. Why this is so is not clear, but it may 
be related to the way in which the gap between the zeros and the singularities increases 
with b. Varying b will vary the overlap of C#J with excited state functions (Cl,,. We suspect 
that there is some more inclusive theory, based on the resolvent (H - E ) - ’  and on the 
inner products (4 I +,,}, which will explain both the presence of the singularities and 
the way in which excited state energies appear in the calculation. The second problem 
arising out of this work is that of why using zero initial RN values works so well, even 
though the exact RN should increase with N. The theory of dominant and subdominant 
solutions of recurrence relations is presumably relevant to the resolution of this problem. 
It also remains to be investigated how far the A( A )  values can be improved by performing 
a full Pad6 approximant analysis of the perturbation series obtained by the linearisation 
procedure of § 6 .  
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